Tools for wheat drought tolerance evaluation and breeding in France

Jean-Charles Deswartet, Katia Beauchene, Guillaume Arjaure, Stéphane Jezequel, Guillaume Meloux, Julien Landrieaux, Alain Boutier, Samuel Thomas, Benoit Desolant, David Gouache, Eric Ober, Volker Lein, Camille Bedard, Laure Duchalais, Jérémy Derory, Céline Zimmerli, Valérie Laurent, Clément Debiton, Guillaume Tcherkez, Gréory Mouillé, Frédéric Baret

Part of this work rely on FSOV (Fonds de Soutien à l’Obtention Végétale) funding (project FSOV 2012-K)

Abstract

Introduction:
Drought is a limiting factor in several areas of France. However, water stress experienced by French wheat crop is mild compared to other production areas, and inconsistent from one cropping season to another; thus, water-stress tolerance strategies must be designed to fit such levels and scenarios of water-stress. Favorable traits have to be identified, and adequate screening method tested. We present an on-going research strategy aimed at addressing trait identification for improved drought tolerance in Western Europe.

Materials and methods:
We rely on a network of 3 types of trials:

- Genetic diversity trials (1 site, several years, > 200 modern cultivars) for drought stressed yield and traits of interest. We developed a microplot scale soil characterization and an automated phenotyping system: the PhenoMobile.
- Multilocal trials performed across years and sites, representing the range of water-stress experienced in France, to capture GxE interactions. Soil characterization allows crop water balance to be computed.
- Specific trials performed under rain-out shelters, with 9 cultivars, in order to assess the contribution of targets traits to yield with/without irrigation.

We focus on yield and its components, isotope (C and O) discrimination in grain, LAI dynamics, biomass partitioning and water use. We also run climatological analysis using a water balance model, in order to characterize water-stress scenarios, and quantify the representativeness of our trials.

Results:
The project is on-going; however, we gathered preliminary results:

- Microplot-scale soil characterization allows for highly significant gains in precision and heritability in droughted treatments
- A clustering of the diversity of drought stress intensity and timing across French producing areas is presented.
- Portable, low-costs technologies as well as automated systems for phenotyping are tested
- Genetic diversity in commercial wheat cultivars for traits of interest has been evaluated

Keywords:
Wheat, drought, phenotyping, water-stress scenario, traits

References:
Tools for wheat drought tolerance evaluation and breeding in France

Jean-Charles Deswarte1, Katia Beauchene2, Guillaume Ajouze3, Stéphane Jezequel4, Guillaume Melou5, Julien Landrieau, Alain Boutier, Samuel Thomas6, Benoit Desolom6, David Gouache6, Eric Oben7, Volker Lein8, Camille Bedard9, Laure Duval2, Laury2, Clément Debton2, Grégoire Mouiller2, Guillaume Tcherkez2, Frédéric Barè9

a, b, c, d, e, f: ARVALIS - Institut du végétal (g): INRA; h: Saadet Union Recherche SAS; i: Seclates Recherche; j: INRA DI; k: Limagrain Europe; l: BAYER SAS; m: Florimond Desprez Veuve et Fils; n: INRA; o: The Institute of Plant Science Paris-Saclay; p: IRWA

Context
- France offers a wide range of pedo-climatic situations.
- Crops grown over shallow soil might experience drought 4 years out of 5, whereas deep soils prevent drought to occur more than 1 year out of 5 under favorable climate ➔ drought tolerance is a significant breeding target in France
- Drought scenarios are very variable (timing and intensity) ➔ traits of interest are likely to differ according to water stress scenarios

Objectives
A collaborative project (FSOV, 2013-2016) has been set up to identify:
- Suitable physiological traits offering high yield depending on most-probable water supply scenario
- Genetic diversity within commercial cultivars for those traits
- Affordable tools to allow breeders to screen for those traits

From GxE to TxE interaction
Mulitlocal trials
- 35 trials - contrasting water-supply
- Unbalanced genotype lists (72 cvs in total)
- Significant GxE interaction ➔
- Data collected: phenology, yield and components, δ13C and δ18O (all lines or only check lines), GAI at anthesis + GAI duration during grain filling, fine soil characterisation for crop water balance computation

Drought scenarios
Methods
- 288 weather stations with historical data
- Averaged soil type estimated for each weather station
- Crop water balance (modified ARCWHEAT-1 phenology and crop model) over 1994-2013 period. Water stress index (actual vs maximum crop evaporation) estimated on 9 phenological phases (BBCH30 till BBCH87)
- Classification method to define water-stress patterns (similar to Chenu et al, 2011)

Framework
1. Genetic diversity ➔ Genetic diversity per trait of interest ➔ Most extreme lines
3. Fine physiological characteristics ➔ Explain cv performance (with/without drought) with simple traits ➔ Impact of single trait involved in crop performance

Genetic diversity - large scale phenotyping
Field trial precision
- Soil resistivity mapping + directed soil characterisation = microplot-level soil water holding capacity estimate ➔
- SWHC at the microplot-level used as covariate in data analysis ➔ improved cultivar characterisation and trait heritability

High throughput phenotyping
- Fully automated phenotyping system (= Phenomobile ➔): RGB camera, multispectral spectrometry, LIDAR ➔

Output
- Classification highlighted 3 different water-stress patterns:
 - #1: absence of water stress
 - #2: post-anthesis water stress
 - #3: early-developing (BBCH32) water stress, with limited rainfall during grain filling

• Significant differences for water-stress scenarios frequencies between wheat growing areas ➔ contrasting ideotypes to grow?
• 32 field trials from the project have been qualified (Mahalanobis distance) according to classification – 9 2015 trials to come

Funded by:

Partners involved:

High throughputs phenotyping
- Fully automated phenotyping system (= Phenomobile ➔): RGB camera, multispectral spectrometry, LIDAR ➔

3. Fine physiological characteristics ➔ Explain cv performance (with/without drought) with simple traits ➔ Impact of single trait involved in crop performance

Genetic diversity - large scale phenotyping
Field trial precision
- Soil resistivity mapping + directed soil characterisation = microplot-level soil water holding capacity estimate ➔
- SWHC at the microplot-level used as covariate in data analysis ➔ improved cultivar characterisation and trait heritability

High throughput phenotyping
- Fully automated phenotyping system (= Phenomobile ➔): RGB camera, multispectral spectrometry, LIDAR ➔

Output
- Classification highlighted 3 different water-stress patterns:
 - #1: absence of water stress
 - #2: post-anthesis water stress
 - #3: early-developing (BBCH32) water stress, with limited rainfall during grain filling

• Significant differences for water-stress scenarios frequencies between wheat growing areas ➔ contrasting ideotypes to grow?
• 32 field trials from the project have been qualified (Mahalanobis distance) according to classification – 9 2015 trials to come

Funded by:

Partners involved: